
Journal of Computational Physics162,123–131 (2000)

doi:10.1006/jcph.2000.6529, available online at http://www.idealibrary.com on

A Lanczos Approach to the Inverse Square Root
of a Large and Sparse Matrix

Artan Boriçi

Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
E-mail: Artan.Borici@psi.ch

Received November 18, 1999; revised March 23, 2000

I construct a Lanczos process on a large and sparse matrix and use the results of
this iteration to compute the inverse square root of the same matrix. The algorithm
is a stable version of an earlier proposal by the author. It can be used for problems
related to the matrix sign and polar decomposition. The application here comes from
the theory of chiral fermions on the lattice.c© 2000 Academic Press

1. INTRODUCTION

The computation of the inverse square root of a matrix is a special problem in scientific
computing. It is related to the matrix sign and polar decomposition [1].

One may define thematrix signby

sign(A) = A(A2)−1/2, (1)

whereA is a complex matrix with no pure imaginary eigenvalues.
In polar coordinates, a complex numberz= x + iy, is represented by

z= |z|eiφ, φ = arctan
y

x
. (2)

In analogy, the polar decomposition of a matrixA is defined by

A = V(A†A)1/2, V−1 = V †, (3)

whereV is the polar part and the second factor corresponds to the absolute value ofA.
The mathematical literature invloving the matrix sign function traces back to 1971 when

it was used to solve the Lyapunov and algebraic Riccati equations [1].
In computational physics one may face a similar problem when dealing with Monte Carlo

simulations of fermion systems, the so-calledsign problem[2]. In this case the integration

123

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.

124 ARTAN BORIÇI

measure is proportional to the determinant of a matrix and the polar decomposition may be
helpful to monitor the sign of the determinant.

The example brought in this paper comes from recent progress in formulating quantum
chromodynamics (QCD) on a lattice with exact chiral symmetry [3].

In continuum, the massless Dirac propagatorDcont is chirally symmetric; i.e.,

γ5Dcont+ Dcontγ5 = 0. (4)

On a regular lattice with spacinga the symmetry is suppressed according to the Ginsparg–
Wilson relation [4],

γ5D + Dγ5 = aDγ5D, (5)

whereD is the lattice Dirac operator.
An explicit example of a Dirac operator obeying this relation is the so-called overlap

operator [5]

aD = 1− A(A†A)−1/2, A = M − aDW, (6)

whereM is a shift parameter in the range(0, 2), which I have fixed at one.
DW is the Wilson operator,

DW =
4∑

µ=1

γµ∇µ − a

2

4∑
µ=1

1µ, (7)

which is a nearest-neighbors discretization of the continuum Dirac operator (it violates
the Ginsparg–Wilson relation).∇µ and1µ are first and second order covariant differences
given by

(∇µψ)i = 1
2a (Uµ,iψi+µ̂ −U †µ,i−µ̂ψi−µ̂)

(1µψ)i = 1
a2 (Uµ,iψi+µ̂ +U †µ,i−µ̂ψi−µ̂ − 2ψi),

whereψi is a fermion field at the lattice sitei andUµ,i anSU(3) lattice gauge filed associ-
ated with the oriented link(i, i + µ̂). These are unitary 3× 3 complex matrices with
determinant one. A set of such matrices forms a lattice gauge “configuration.”
γµ, µ = 1, . . . ,5 are 4× 4 Dirac matrices which anticommute with each-other.
Therefore, if there areN lattice points in four dimensions, the matrixA is of order

12N. A restive symmetry of the matrixA that comes from the continuum is the so-called
γ5—symmetry, which is the hermiticity of theγ5A operator.

By definition, computation ofD involves the inverse square root of a matrix. This is
a non-trivial task for large matrices. Therefore several algorithms have been proposed by
lattice QCD physicists [6–10].

All these methods rely on matrix–vector multiplications with the sparse Wilson matrix
DW, being therefore feasible for large simulations.

In fact, methods that approximate the inverse square root by Legendre [6] and Chebyshev
polynomials [7] need to knowa priori the extreme eigenvalues ofA†A to be effective. This
requires computational resources for at least one conjugate gradients (CG) inversion.

LANCZOS ALGORITHM 125

In [8] the inverse square root is approximated by a rational approximation, which allows
an efficient computation via a multi-shift CG iteration. Storage here may be an obstacle,
which is remedied by a second CG step [11].

The Pade approximation used by [9] needs the knowledge of the smallest eigenvalue of
A†A. Therefore the method becomes effective only in connection with theD inversion [12].

The method presented earlier by the author [10] relies on taking exactly the inverse square
root from the Ritz values. These are the roots of the Lanczos polynomial approximating the
inverse ofA†A.

In that work the Lanczos polynomial was constructed by applying the Hermitian operator
γ5A. The latter is indefinite, thereby responsible for observed oscillations in the residual
vector norm [10].

Here I use a Lanczos polynomial on the positive definite matrixA†A. In this case the
residual vector norm decreases monotonically and leads to a stable method. This is a crucial
property that allows a reliable stopping criterion that I will present here.

The paper is self-contained: in the next section I will briefly present the Lanczos algorithm
and set the notations. In Section 3, I use the algorithm to solve linear systems, and in
Section 4, give the computation of the inverse square root. The method is tested in Section 5
and conclusions are drawn in the end.

2. THE LANCZOS ALGORITHM

The Lanczos iteration is known to approximate the spectrum of the underlying matrix in
an optimal way and, in particular, it can be used to solve linear systems [13].

Let Qn = [q1, . . . ,qn] be the set of orthonormal vectors, such that

A†AQn = QnTn + βn qn+1
(
e(n)n

)T
, q1 = ρ1b, ρ1 = 1/‖b‖2, (8)

whereTn is a tridiagonal and symmetric matrix,b is an arbitrary vector, andβn is a real and
positive constant.e(n)m denotes the unit vector withn elements in the directionm.

By writing down the above decomposition in terms of the vectorsqi , i = 1, . . . ,n and
the matrix elements ofTn, I arrive at a three-term recurrence that allows these vectors
to be computed in increasing order, starting from the vectorq1. This is theLanczos
Algorithm,

β0 = 0, ρ1= 1/‖b‖2, q0= o, q1= ρ1b

for i = 1, . . .

v = A†Aqi

αi = q†i v

v := v − qiαi − qi−1βi−1

βi = ‖v‖2
if βi < tol, n = i, end for

qi+1 = v/βi

(9)

wheretol is a tolerance which serves as a stopping condition.

126 ARTAN BORIÇI

The Lanczos algorithm constructs a basis for the Krylov subspace [13]:

span{b, A†Ab, . . . , (A†A)n−1b}. (10)

If the Algorithm stops afternsteps, one says that the associated Krylov subspace is invariant.
In floating point arithmetic, there is the danger that once the Lanczos algorithm (poly-

nomial) has approximated well some part of the spectrum, the iteration reproduces vectors
which are rich in that direction [13]. As a consequence, the orthogonality of the Lanczos
vectors is spoiled with an immediate impact on the history of the iteration: if the algo-
rithm stoped aftern steps in exact arithmetic, in the presence of round-off errors the loss of
orthogonality would keep the algorithm going on.

3. THE LANCZOS ALGORITHM FOR SOLVING A†Ax = b

Here I will use this algorithm to solve linear systems, where the loss of orthogonality
will not play a role in the sense that I will use a different stopping condition.

I ask for the solution in the form

x = Qnyn. (11)

By projecting the original system onto the Krylov subspace I get

Q†n A†Ax = Q†nb. (12)

By construction, I have

b = Qne(n)1

/
ρ1. (13)

Substitutingx = Qnyn and using (8), my task is now to solve the system

Tnyn = e(n)1

/
ρ1. (14)

Therefore the solution is given by

x = QnT−1
n e(n)1

/
ρ1. (15)

This way, using the Lanczos iteration, one reduces the size of the matrix to be inverted.
Moreover, sinceTn is tridiagonal, one can computeyn by short recurences.

If I define

ri = b− A†Axi , qi = ρi r i , x̃i = ρi xi , (16)

wherei = 1, . . . , it is easy to show that

ρi+1βi + ρiαi + ρi−1βi−1= 0
(17)

qi + x̃i+1βi + x̃iαi + x̃i−1βi−1= 0.

LANCZOS ALGORITHM 127

Therefore the solution can be updated recursively and I have the following
Algorithm1 for solving the system A†Ax = b:

β0 = 0, ρ1 = 1/‖b‖2, q0 = o, q1 = ρ1b

for i = 1, . . .

v = A†Aqi

αi = q†i v

v := v − qiαi − qi−1βi−1

βi = ‖v‖2
qi+1 = v/βi (18)

x̃i+1 = −qi + x̃iαi + x̃i−1βi−1

βi

ρi+1 = −ρiαi + ρi−1βi−1

βi

r i+1 := qi+1/ρi+1

xi+1 := yi+1/ρi+1

if
1

|ρi+1| < tol, n = i, end for

4. THE LANCZOS ALGORITHM FOR SOLVING (A†A)1/2x = b

Now I would like to computex= (A†A)−1/2b and still use the Lanczos algorithm. In
order to do so I make the following observations:

Let(A†A)−1/2 be expressed by a matrix-valued function, for example the integral formula
[1]:

(A†A)−1/2 = 2

π

∫ ∞
0

dt(t2+ A†A)−1 (19)

From the previous section, I use the Lanczos algorithm to compute

(A†A)−1b = QnT−1
n e(n)1

/
ρ1. (20)

It is easy to show that the Lanczos algorithm is shift-invariant; i.e., if the matrixA†A is
shifted by a constant, sayt2, the Lanczos vectors remain invariant. Moreover, the corre-
sponding Lanczos matrix is shifted by the same amount.

This property allows one to solve the system(t2+A†A)x = b by using the same Lanczos
iteration as before. Since the matrix(t2+ A†A) is better conditioned thanA†A, it can be
concluded that once the original system is solved, the shifted one is solved too. Therefore
I have

(t2+ A†A)−1b = Qn(t
2+ Tn)

−1e(n)1

/
ρ1. (21)

Using the above integral formula and putting everything together, I get

x = (A†A)−1/2b = QnT−1/2
n e(n)1

/
ρ1. (22)

128 ARTAN BORIÇI

There are some remarks to be made here:

(a) As before, by the application of the Lanczos iteration onA†A, the problem of
computing(A†A)−1/2b reduces to the problem of computingyn = T−1/2

n e(n)1 /ρ1 which is
typically a much smaller problem than the original one. But sinceT1/2

n is full, yn cannot
be computed by short recurrences. It can be computed, for example, by using the full
decomposition ofTn in its eigenvalues and eigenvectors; in fact this is the method I have
employed too, for its compactness and the small overhead for moderaten.

(b) The method is not optimal, as it would have been if one had applied it directly to
the matrix(A†A)1/2. By using A†A the condition is squared, and one loses a factor of 2
compared to the theoretical case!

(c) From the derivation above, it can be concluded that the system(A†A)1/2x = b is
solved at the same time as the systemA†Ax = b.

(d) To implement the result (22), I first construct the Lanczos matrix and then compute

yn = T−1/2
n e(n)1

/
ρ1 (23)

To computex = Qnyn, I repeat the Lanczos iteration. I save the scalar products, though it
is not necessary.

Therefore I have the following
Algorithm2 for solving the system(A†A)1/2x = b:

β0 = 0, ρ1 = 1/‖b‖2, q0 = o, q1 = ρ1b

for i = 1, . . .

v = A†Aqi

αi = q†i v

v := v − qiαi − qi−1βi−1

βi = ‖v‖2
qi+1 = v/βi

ρi+1 = −ρiαi + ρi−1βi−1

βi

if
1

|ρi+1| < tol, n = i, end for (24)

Set(Tn)i,i = αi , (Tn)i+1,i = (Tn)i,i+1 = βi , otherwise(Tn)i, j = 0

yn = T−1/2
n e(n)1 /ρ1 = Un3

−1/2
n U T

n e(n)1

/
ρ1

q0 = o, q1 = ρ1b, x0 = o

for i = 1, . . . ,n

xi = xi−1+ qi y
(i)
n

v = A†Aqi

v := v − qiαi − qi−1βi−1

qi+1 = v/βi

LANCZOS ALGORITHM 129

By o I denote a vector with zero entries and byUn,3n the matrices of the eigenvec-
tors and eigenvalues ofTn. Note that there are only four large vectors necessary to store:
qi−1,qi , v, xi .

5. TESTING THE METHOD

I propose a simple test: I solve the systemA†Ax = b by applyingAlgorithm2twice; i.e.,
I solve the linear systems

(A†A)1/2z= b, (A†A)1/2x = z (25)

in the above order. For each approximationxi , I compute the residual vector

ri = b− A†Axi . (26)

The method is tested for an SU(3) configuration atβ = 6.0 on an 8316 lattice, corre-
sponding to an order 98,304 complex matrixA.

In Fig. 1 I show the norm of the residual vector decreasing monotonically. The stagnation
of ‖ri ‖2 for small values oftol may come from the accumulation of round-off error in the
64-bit precision arithmetic used here.

This example shows that the tolerance line is above the residual norm line, which confirms
the expectation thattol is a good stopping condition forAlgorithm2.

FIG. 1. Test of the Lanczos algorithm for the inverse square root(A+A)−1/2b.

130 ARTAN BORIÇI

6. CONCLUSIONS

I have presented a Lanczos method to compute the inverse square root of a large and
sparse positive definite matrix.

The method is characterized by a residual vector norm that decreases monotonically and
a consistent stopping condition. This stability should be compared with that of a similar
method presented earlier by the author [10], where the underlying Hermitian but indefinite
matrixγ5A led to appreciable instabilities in the norm of the residual vector.

In terms of complexity this algorithm requires less operations for the same accuracy than
its indefinite matrix counterpart. This property is guaranteed by the monotonicity of the
residual vector norm. Nontheless, the bulk of the work remains the same.

With the improvement in store the method is complete.
It shares with methods presented in [8, 9] the same underlying Lanczos polynomial.

As is well known [13], CG and Lanczos methods for solving a linear system produce the
same results in exact arithmetic. In fact, CG derives from the Lanczos algorithm by solving
the coupled two-term recurences of CG for a single three-term recurence of Lanczos.
However, the coupled two-term recurences of CG accumulate less round-off. This makes
CG preferable for ill-conditioned problems.

There are two main differences between the method presented here and those in [8, 9]:

(a) Since CG and Lanczos are equivalent, they produce the same Lanczos matrix.
Therefore, any function ofA†A translates for both algorithms into a function ofTn (given the
basis of Lanczos vectors). The latter function translates into a function of the Ritz values,
the eigenvalues ofTn. That is, whenever the methods of papers [8, 9] try to approximate
the inverse square root ofA†A, the underlying CG algorithm shifts this function to the Ritz
values. It is clear now that if I take the inverse square root from the Ritz values exactly, I
have no approximation error. This is done inAlgorithm2.

(b) Algorithm2sets no limits on the amount of memory required, whereas the multi-
shift CG needs to store as many vectors as the number of shifts. For high accuracy approx-
imations the multi-shift CG is not practical. However, one may lift this limit at the expense
of a second CG iteration (two-step CG) [11]. ThereforeAlgorithm2and the two-step CG
have the same iteration workload, withAlgorithm2computing exactly the inverse square
root.

Additionally, Algorithm2requires the calculation of Ritz eigenpairs ofTn, which makes
for an overhead proportional to∼n2 when the QR algorithm is used for the eigenvalues
and the inverse iteration for the eigenvectors [13]. Since the complexity of the Lanczos
algorithm is∼nN, the relative overhead is proportional to∼n/N. For moderate gauge
couplings and lattice sizes this is a small percentage.

I conclude that the algorithms of [8, 9] may be used in situations where high accuracy is
not required and/orA is well conditioned.

Experience with overlap fermions shows that high accuracy is often essential [7, 10].
Algorithm2is best suited in such situations.

REFERENCES

1. For a starting point and a thorough review of the problem see N. J. Higham,Proceedings of “Pure and Applied
Linear Algebra: The New Generation,” Pensacola, FL, March 1993.

LANCZOS ALGORITHM 131

2. For an example in simulating finite density QCD, see P. Hasenfratz and F. Karsch,Phys. Lett. B125, 308
(1983). For the Hubbard model, see D. J. Scalapino and R. L. Sugar,Phys. Rev. Lett.46, 519 (1981).

3. For a recent review see H. Neuberger, hep-lat/9909042.

4. P. H. Ginsparg and K. G. Wilson,Phys. Rev. D25, 2649 (1982).

5. H. Neuberger,Phys. Lett. B417, 141 (1998);Phys. Rev. D57, 5417 (1998).

6. B. Bunk,Nucl. Phys. Proc. Suppl. B63, 952 (1998).

7. P. Hernandez, K. Jansen, and M. L¨uscher,Nucl. Phys. B552, 363 (1999).

8. H. Neuberger,Phys. Rev. Lett.81, 4060 (1998).

9. R. G. Edwards, U. M. Heller, and R. Narayanan,Nucl. Phys. B540, 457 (1999).

10. A. Boriçi, Phys. Lett. B453, 46 (1999).

11. H. Neuberger,Int. J. Mod. Phys. C10, 1051 (1999).

12. R. G. Edwards, U. M. Heller, and R. Narayanan,Phys. Rev. D59, 094510 (1999).

13. G. H. Golub and C. F. Van Loan,Matrix Computations, The Johns Hopkins University Press, Baltimore, 1989.
[This is meant as a general reference with original references included therein.]

	1. INTRODUCTION
	2. THE LANCZOS ALGORITHM
	3. THE LANCZOS ALGORITHM FOR SOLVING AdAx = b
	4. THE LANCZOS ALGORITHM FOR SOLVING (AdA)1/2 x = b
	5. TESTING THE METHOD
	FIG. 1.

	6. CONCLUSIONS
	REFERENCES

